Algebraic Pitfalls

By Professor Prime

Adding/Subtracting Fractions:

- When adding or subtracting fractions it can be common for someone to add or subtract without having a common denominator. For example: $1 / 2+1 / 4=2 / 6=1 / 3$. However this is incorrect.
- It may help to think of the fraction as one unit or as decimals.
- $1 / 2=0.50$ and $1 / 4=0.25$. If we were to add them, we have 0.75 or in fractional form $3 / 4$ as opposed to $1 / 3$ which about 0.33 .
- If we change the denominator first we should get this. $1 / 2+1 / 4=$ $2 / 4+1 / 4=3 / 4$.
- Essentially having the same denominator allows us to add like terms.

Multiplying/Division of Fractions:

- When we have a sum or difference in a fraction it is common to cancel out terms if we a common factor, however this is problematic.
- Take $(1+2) / 4$. We can see this is $3 / 4$. For some people they cancel the 2 and the 4 to get $1 / 2$, which is not the same thing.
- When we think the sum or difference, we can treat that as one term.
- When we have a product in the numerator or denominator then we cancel things out, i.e. (5* 6$) / 3=5(2)=10$.

Division of 3 terms vs. 4 terms

- With division of 4 terms, we have a/b/c/d and this is the same thing as a / b * d / c.
- Ex: 4 terms, 3/4/6/5 = 3/4 * 5/6 = 15/24 = 5/8.
- With division of 3 terms, there can be confusion. We have a/b/c and it is tempting to think $\mathrm{a} / \mathrm{b}{ }^{*} \mathrm{c}$.
- However we should think of it as $a / b / c / 1$ and so we have a / b * 1/c or a/bc
- Ex: 3 terms $1 / 2 / 2$, we can view this as $1 / 2 / 2 / 1$ or $1 / 2 * 1 / 2=1 / 4$.
- Ex: $3 / 2 / 4$, we can view this as $3 / 2 / 4 / 1=3 / 2 * 1 / 4=3 / 8$

Square Roots: When to Use Principal Root

- When dealing with the simplification of an expression i.e. sqrt(4), it is okay to say 2 , to just have the principal root, (the positive root).
- When solving an equation you want to examine both the positive and negative solutions so that you capture all of the possible solutions.
- For example, $x=\operatorname{sqrt}(9)$, some would say $x=3$. While $x=3$ is one of the solutions, it does not tell the whole story, $x=3$ or $x=-3$., in this case.

Dividing Out x and solving for x :

- When solving for x, it can be tempting to divide out an x to simplify things, but this does not tell the whole story and sometimes it may actually complicate your process.
- Example: $2 x^{\wedge} 2+x=0$. If you divided an x out, then you get $2 x+1=0$. You would get $x=-1 / 2$. However this misses solutions.
- If you factor here, it can help. So with $2 x^{\wedge} 2+x=0$, it is the same as $x(2 x+1)=$ 0 . In order to to zero out the equation, then $\mathrm{x}=0$, or $2 \mathrm{x}+1=0$. Thus $\mathrm{x}=0$ or x $=-1 / 2$.
- With complicated equations, it becomes more clear that this method of dividing out x does not work. Ex: $x^{\wedge} 2+5 x+6=0$, if you divide out a variable it gets messy quickly. We get $x+5+1 / x=0$, which we don't know how to solve.

Squaring a Sum/Difference (Binomials)

- When squaring a sum or difference for a binomial, it is not uncommon to miss some terms, usually the middle term.
- Take $(a+b)^{\wedge} 2$ and $(a-b)^{\wedge} 2$. It is tempting to say that $(a+b)^{\wedge} 2=a^{\wedge} 2$ $+b^{\wedge} 2$ and $(a-b)^{\wedge} 2=a^{\wedge} 2-b^{\wedge} 2$.
- However this misses some information and is thus not true.
- $(a+b)^{\wedge} 2=a^{\wedge} 2+2 a b+b^{\wedge} 2$ and $(a-b)^{\wedge} 2=a^{\wedge} 2-2 a b+b^{\wedge} 2$
- This a shortcut. If you foil things out you will find the same.
- Think about this way. $(a+b)^{\wedge} 2=(a+b)(a+b)$ and $(a-b)^{\wedge} 2=(a-b)$ (a-b).

Square Root of a Sum

- While you can split up roots when it comes to products, if it is a sum not so much.
- For example sqrt(xy) = sqrt(x) sqrt(y). However sqrt($x+y$) does not equal sqrt(x) + sqrt (y). It does not follow the some rules.
- If it helps for the product, it makes sense. $\operatorname{sqrt}(x y)=(x y)^{\wedge 1} / 2$. Then using exponent rules $(x y)^{\wedge 11 / 2}=(x)^{\wedge 1 / 2}(y)^{\wedge 1} / 2=\operatorname{sqrt}(x)$ sqrt (y).
- We can't say the same with the square root of a sum.

Improper Distribution

- It is not uncommon for some people to not distribute all the way through.
- For example $2(x-5)$, some might say the result is $2 x-5$. However they did not distribute the 2 to both terms. When you distribute a term or terms, you have to apply to the every term in the parenthesis. So you'd have 2 x -10.
- It may be helpful to physically multiply things out.
- Another common distribution error is dealing with exponents.
- Some will apply the term they are distributing first.
- For example $4(x+1)^{\wedge} 2$. Some may say the result is $(4 x+4)^{\wedge} 2$. However exponentation comes first. We'd have to do $(x+1)^{\wedge} 2$ and then multiply the result by 4 .

Subtracting Polynomials

- With subtracting polynomials, it is not uncommon to miss a few things.
- The most common mistake is not applying the minus sign to the whole expression.
- One way is to apply the minus sign, treating it like you are multiplying by negative one.
- If not, you have to be extraordinarily careful.
- You could also rearrange things.

Negative Exponents

- One of the biggest misconceptions about negative exponents is that they make the numbers negative. This is very much not true.
- Negative exponents have no bearing on the sign of a number/variable.
- For example, someone may see $2^{\wedge}\{-1\}$ and they may say this would be equal to -2 , or they may say see $3^{\wedge}\{-2\}$ and say it is equal $-3^{\wedge} 2=9$ or -9 depending on how they read this, or $3^{*}-2=$ -6.
- In these examples the logic is wrong.
- If we have $a^{\wedge}\{-n\}$ where a is not zero, it just means we have 1/(a^n).
- For instance if we have $2^{\wedge}\{-2\}$, this is equal to $1 /\left(2^{\wedge}\{2\}\right)=1 / 4$ as opposed to $-2^{\wedge}\{2\}=-4$

Fractional Exponents and Solving Them

- When given an equation raised to a fractional exponent it can be tempting to turn itinto radical form. Ex: $(x+1)^{\wedge} / / 3=4$
- However this does not solve anything, it makes things more complicated. Ex: cuberoot $\left[(x+1)^{\wedge} 2\right]=4$ or $\left[(x+1)^{\wedge 1 / 3}\right]^{\wedge} 2=4$. This is does not help us.
- Let's try getting rid of the fractional exponent.
- This can be accomplished by raising both sides by the reciprocal of the exponent.
- This in conjunction with the power of a power rule for exponents allows us to move in the direction we want to move.
- Ex: $(x+1)^{\wedge 2} / 3=4$. If we take this and apply our logic then $\left[(x+1)^{\wedge 2} / 3\right]^{\wedge} 3 / 2=$ $(4)^{\wedge} 3 / 2$. This implies that we then have $x+1=(4)^{\wedge} 3 / 2$.
- With (4)^ $3 / 2$ we can then use radical form. We have sqrt(4^3) or (sqrt $4)^{\wedge} 3$. We get 8 in either case. So we have $x+1=8$ or $x=7$.

